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SUMMARY 

A numerical scheme is developed to  predict the heat transfer and pressure drop coefficients in flow through 
rigid tube bundles. The scheme uses the Galerkin finite element technique. The conservation equations for 
laminar steady-state flow are cast in the form of streamfunction and vorticity equations. A Picard iteration 
method is used for the solution of the resulting system of non-linear algebraic equations. Results for the heat 
transfer and pressure drop coefficients are obtained for tube arrays of pitch ratios of 1.5 and 2.0. Very good 
agreement of the present results and experimental data obtained in the past is observed up to  Reynolds 
numbers of 1OOO. It is also observed that the results of the present method show better agreement with the 
experimental data and that they are applicable for higher Reynolds numbers than results of other studies. 
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1. INTRODUCTION 

Tubular heat exchangers are found in many energy conversion and chemical reaction systems 
ranging from nuclear reactors to refinery condensers. The most important design variables of the 
tubular heat exchangers are the outside heat transfer coefficient of the tubes and the pressure drop 
of the fluid flowing externally (shell side pressure drop). 

Correlations of experimental data were used in the past for the determination of the heat and 
momentum transfer in tube bundles. Some of the earlier studies of Grimison,' Bergelin et al.'.' 
and Gram et aL4 provided the experimental data on which correlations were based. The use of 
correlations for design purposes often involved extrapolation of data beyond their region of 
validity, thus resulting in significant errors. This fact triggered the appearance of semi-analytical 
approaches to the problem of heat and momentum transfer, which together with the experimental 
studies provided a more reliable method for design. An outline of these studies may be found in a 
review article by Zukauskas5 and in two books by Mueller6 and Zukauskas and Ziugzda.' 

The rapid development of computers has recently resulted in the use of numerical simulations 
for the solution of heat and momentum transfer problems in tubular heat exchangers. Ishihara 
and Bell* obtained the friction coefficients of tube bundles up to Reynolds numbers of 100. 
Le Feuvre' and also Launder and Massey" obtained results in the laminar and turbulent regions 
for two cylinders in a row, and Fujii et a1.l' extended the calculations in the laminar region for five 
cylinders. Antonopoulos12 first made calculations in the laminar regime and later13 used a 
numerical scheme to predict the flow characteristics in straight and inclined tube arrangements for 
laminar and turbulent flows. All these numerical studies used variations of the finite difference 
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method for the solution of the steady-state approximation to the problem. There is only one study 
using a finite element method with the penalty formulation, that of Dhaubhadel et ~ 1 . ' ~  
who obtained the solution to a steady-state flow for a five-tube column for Reynolds numbers 
up to 600. 

The objective of the present study is to use a finite element formulation for the numerical 
solution to the steady-state momentum and heat transfer problem of a tube bundle in crossflow. 
The technique presented in this work, suitable for high-Reynolds-numbers flows,l - I 7  uses the 
Galerkin weighted residuals method with bilinear basis functions and a streamfunction/vorticity 
formulation. Numerical results for this formulation can be found in Campion-Renson and 
CrochetL6 for the square wall driven cavity problem at Re = 0 (Stokes flow), 100 and 400, and in 
IkegawaI7 for a thin channel driven flow at Re up to 1400. In this work a numerical solution is 
obtained for five tubes in a column; however, the method can be generalized to bundles of more 
tubes. Solutions are obtained for Reynolds numbers up to 1000. The method of solution used in 
this study has also been extended to the case of multiply connected regions in order to solve the 
problem of flexible vibrating tubes in a heat exchanger bundle.", 

2. PROBLEM FORMULATION 

The fluid velocities met in heat exchanger applications are low enough for the outside fluid to be 
considered incompressible. Typical heat exchanger bundles have very high length-to-diameter 
ratios (I/d > 30) so that the outside flow can be considered to be two-dimensional. Finally, only the 
laminar steady-state case is considered here since previous studies have s h ~ w n ' ~ ' ~ ~  that the 
solution to the steady-state problem yields reliable results for the heat transfer and pressure drop 
coefficients at moderate Re despite the appearance of vortices downstream. 

The present study considers the two-dimensional incompressible, steady-state flow past a five- 
row deep in-line tube bank. The rows in the flow geometry are assumed to be of infinite extent so 
that the flow pattern can be considered as periodic normal to the flow direction. Therefore the 
computational domain is limited to the one shown in Figure 1 by the dashed lines. The five-row 
deep tube bank geometry is completely characterized by two dimensionless pitch ratios 

p1 = P , / d  and p2 = P ,  I d ,  

Figure 1 .  The five-row model and the computational domain 
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where d is the (common) tube diameter, and PI and P, are the distances between the tube centres 
normal and parallel to the flow direction respectively. 

The conservation equations for the flow under the previously stated assumptions are given, in a 
Cartesian frame of reference x ,  y and in dimensionless form, as follows: 

continuity 

momentum 

energy 

In the above equations the velocities are made dimensionless by dividing with the upstream 
velocity U and the co-ordinates by dividing with the tube diameter d.  The dimensionless variables 
0 and I’ are defined in terms of the dimensional temperature 7 and dimensional pressure P* as 

where Tin and T,., are the temperatures at the inlet and the tube wall respectively. Finally, the 
Reynolds number is defined by Re = Ud/v. 

The pressure gradient term in the momentum equations is eliminated by cross-differentiation 
and subtraction. The resulting equation is then given in terms of the dimensionless vorticity w as 
follows: 

The continuity equation is satisfied automatically if the velocity components are evaluated from 
the streamfunction I). From the definition of the vorticity, the streamfunction has to satisfy a 
Poisson equation: 

Auxiliary equations are used to obtain the velocities u and t’ for the flow field and the pressure 
field. The two velocities may be obtained from the vorticity function by solving the following two 



1384 Y. CHANG, A. N. BERIS AND E. E. MICHAELIDES 

Poisson equations: 

In finite element post-processing calculations, it is advantageous to evaluate the velocity variables 
by solving the corresponding Poisson equations (equation (8) above) rather than by differentiating 
the streamfunction, since the latter approach leads to discontinuous profiles. For the pressure one 
may also obtain a Poisson equation by cross-differentiating and adding the two momentum 
equations. The resulting equation is 

The boundary conditions for the variables, in reference to the computational domain depicted 
in Figure 1, are defined in the following paragraphs. Note that the functionsf, andf, used to 
specify the non-trivial boundary conditions for the vorticity are specified in Section 3. 

At the inlet (x = 0) a free stream flow is assumed: 

- ap 
ax $ = Y ,  m=fi($,m), e = v = o ,  u = i ,  - _ -  

At the upper boundary (y = 1) symmetry conditions are used: 

At the outlet (x = L) fully developed (in x)  flow and temperature profiles are assumed: 

At the lower symmetry line ( y  = 0) the following symmetry conditions are applicable: 

au aP *=a=-=-- 
aY a Y - V = - = O .  aY 

Finally, at the surface of the tubes (r  = 0.5) non-slip conditions are assumed: 

where r and 4 refer to the local cylindrical co-ordinate system for each tube obtained with centre 
the centre of the tube. 

The Galerkin weighted residuals are formed from the weak formulation of the conservation 
equations according to standard procedure. The same bilinear basis functions $J~ have been used in 
the finite element approximations and as the weighting functions in all equations. The zero normal 
derivative (Neumann) boundary conditions have been used to eliminate the surface integrals at the 
inlet, outlet and symmetry lines and to bring the resulting discrete equations to their final form. 
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Accordingly, the final forms of the vorticity and streamfunction equations are 

where the subscript ‘h’ denotes the finite element approximation to the corresponding variable. 
The final form of the energy equation is 

Finally, the three auxiliary equations for the two velocity components u and u and for the pressure 
P are as follows: 

It must be pointed out that the surface integral in the last equation does not vanish and has to be 
evaluated using the non-homogeneous boundary conditions for the normal derivative of the 
pressure indicated in equations (lO)-the boundary conditions for the pressure are of the 
Neumann type at all the surfaces. The surface integrals do not contribute in the rest of 
the equations because the boundary conditions for the rest of the variables are, depending 
on the boundary, either of the essential (Dirichlet) type or of the Neumann type corresponding to 
zero normal derivatives (natural boundary conditions). More details about the derivation of the 
equations and their transformation to discrete form may be found in Chang.’* 

3. NUMERICAL IMPLEMENTATION 

One of the difficulties of the implementation of the streamfunction/vorticity formulation is the fact 
that the values of the vorticity on the solid wall and at the inlet are ~nkn0wn. l~  This difficulty has 
been thoroughly studied in the finite difference context: see Roache2’ (Chapter 111-C, pp. 14@160) 
for a review of the available methods to handle the missing boundary conditions. In a finite 
element context the extension of the finite difference techniques is straightforward; however, no 
information exists for their reliability and caution is required.” In this work, a second-order 
accurate boundary condition for the vorticity was found to give reliable results (the solution 
converges rapidly with mesh refinement). 

The boundary values for the vorticity are expressed in terms of the values of the streamfunction 
and vorticity at the boundary, and adjacent to the boundary, nodal points. A third-order Taylor 
expansion of the streamfunction yields the following expression: 
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where y is normal to the boundary co-ordinate and h is the y-distance between the nodal points, 
w on the wall and w + 1 adjacent to the wall. Furthermore, from the streamfunction equation and 
the definition of the vorticity we have 

Substitution of the last equation into (15a) yields the following expression for the value of the 
streamfunction at the nodal point adjacent to the wall, t+hw+,: 

a3* 
aY $ w + l  = $ , - ~ w w h 2 + ~ ~ h 3 + O ( h 4 ) .  

Differentiation of the vorticity function with respect to y and use of the continuity equation 
enables the expression of the last term in equation (15c) in terms of the derivatives of vorticity. 
Thus the final equation for the vorticity at the wall is 

0, = +ow+ 1 - 

A similar equation is derived for fl and is used in the finite element method for the vorticity 
boundary condition (w =fl($, w))  at the inlet. 

Because of the non-linear nature of the vorticity transport equation (6), the discretized 
equations, which result from the application of the Galerkin finite element method, equations (1 1) 
and (12), are non-linear and need to be solved iteratively. In the present study a simple Picard 
iteration technique is used for the solution of the non-linear algebraic equations. The flowchart of 
the iteration technique is shown in Figure 2. After solving for the streamfunction and vorticity, the 
two velocity components are calculated by direct solution of the linear equations obtained from 
the weak formulation of the Poisson equations (14a) and (14b). The energy equation is not coupled 
with the momentum equations and therefore is solved separately. The velocity values obtained 
from the solution of the Poisson equations (14a) and (14b) are put into the energy equation, which 
is solved for the dimensionless temperature 8. Similarly, the pressure values are obtained by 
solving separately the Poisson equation (1 4c). 

4. RESULTS AND OBSERVATIONS 

4.1. Method validation 

The numerical scheme was tested against known analytical flow solutions. First, the Poiseuille 
flow was solved numerically using the above scheme. In the process of determination of the 
vorticity function, the convergence criterion used was a maximum fractional deviation of 10- for 
every dependent variable. The solution converged in three iterations using the Newton-Raphson 
method. The velocities derived from the numerical method agreed up to the sixth decimal place 
with the analytical solution for a mesh size involving 88 elements (8 in transverse x 11 in 
longitudinal direction). 

Secondly, the developing flow in a channel of aspect ratio equal to 20 was calculated. For this 
flow a Picard iteration scheme was used. The convergence criterion for the scheme was the same as 
in the Poiseuille flow, and the iteration scheme for the streamfunction and vorticity equations 
converged in about 20 iterations for most of the Reynolds numbers examined. The numerical 
results were compared with the analytical solution.” In this case the velocity in the fully 
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Figure 2. The procedure for Picard iteration 

developed region was calculated with an accuracy of 0.001 YO and the development length within 
1% for Reynolds numbers between 30 and 1000 for a mesh of 144 elements (8 transverse x 16 
longitudinal). The two comparisons of the numerical scheme with well known results provided 
strong evidence of the reliability of the present method and the good resolution obtained with the 
mesh size used. 

4.2. Results for the tube bundle 

The flow geometry for a five-row deep tube bundle is shown in Figure 1, where P is the pitch 
distance and d the tube diameter. Because of the geometric symmetry, the region between the 
broken lines was chosen as the flow domain in the numerical method. A mesh independence test 
was performed first for the quantities of interest. The numerical results from six different 
computational meshes were compared, and a mesh with 324 nodes and 240 elements resulted in 
less than 2% error in the tube bundle calculations. The results of the mesh test and the actual mesh 
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used in the calculations are shown in Figures 3 and 1 respectively. This mesh provides a dense 
discretization near the solid tubes. The width of the flow domain is 075 diameters (designed for a 
pitch ratio of 1.5), the entrance region is located 4.375 diameters upstream of the first tube and the 
exit region is 10.375 diameters in length. The inlet conditions are thus specified by actual design 
conditions of heat exchangers. It was also shown that even for the high-Reynolds-number cases 
examined, this proximity of the boundary to the first tube did not affect the derived results. 

For a tube bundle of this geometry, results for eight different Reynolds numbers between 50 and 
1000 were obtained. The results for the vorticity and streamfunction variables were obtained 
typically in 3WO Picard iterations. The calculations for these variables required approximately 
20 min CPU time on a VAX 11/785 computer. The incremental loading (parametric continuation) 
process was used for the calculation of the solution at successively higher Reynolds numbers. 

The computed streamlines for three different Reynolds numbers are shown in Figure 4. The 
fluid assumed for this figure and all the subsequent ones is air (Pr = 0.7). It is observed that the flow 
patterns are similar and that the recirculation region behind the cylinders expands with increasing 
Reynolds number. The same observation was made for the vorticity lines. It is also observed in 
Figure 4 that fluctuations in the inlet region appear for the highest Reynolds number. These 
fluctuations were practically eliminated when a finer mesh was used. 

The velocity, pressure and temperature fields were subsequently calculated as described in 
Section 3. Constant vorticity lines are shown in Figure 5 and the dimensionless pressure profiles 
along the top symmetry line for two Reynolds numbers are shown in Figure 6. The pressure is 
made dimensionless by dividing with the dynamic head of the incoming flow. For this reason the 
results of the Re = 540 case lie above the results for the lower Reynolds number, a fact which is well 
documented from experiments.3322 It must be pointed out here that in Figures 4 and 5 only the 
general characteristics of the flow are intended to show (such as the development of recirculation 
zones) and not any quantitative details. 

Figure 7 shows the local Nusselt number around the five tubes for,Re = 540. It is seen that the 
first tube has a higher Nusselt number and that a maximum in the Nusselt number is observed. 

P 

20.00 30.00 40.00 50.00 60.00 
Number o f  grid p o i n t s  * 1 0-I 

Figure 3. The results of the mesh independence test on the heat transfer coefficient 
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Re=256 

Re=540 

Re=834 

Figure 4. Flow streamlines at different Reynolds numbers for a pitch ratio of 1.5 

F -I -- 
Re=256 

I 1 
Re=540 

Figure 5. Constant vorticity lines at different Reynolds numbers for a pitch ratio of 1.5 

This maximum is not exactly at the stagnation point of the tubes, a result also observed by 
others.' ' * I 4  These results are in qualitative agreement with the analytical and experimental data 
for a single cylinder7 and the numerical data for a tube bundle."~14 

The local Nusselt numbers were obtained from the following equation: 

where a is the film heat transfer coefficient, and Tin and Tb are the inlet and bulk temperatures 
respectively. 
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Figure 6. Computed pressure profile along the top symmetry line 
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Figure 7. Local Nusselt number profiles for the five cylinders in the tube bank 

The average pressure drop and Nusselt number for the tube bundle of pitch ratio 1.5 were 
calculated from the local results. These two quantities are of engineering interest and were 
determined experimentally in several projects, including those of Bergelin et al.,3 Michaelides et 
aLZ2 and the Engineering Standards Development Institute(ESD1) for 1973 and 1974. The results 
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of the present study for the average pressure drop coefficient per row are shown in Figure 8 along 
with other calculations and the curve obtained by Bergelin et aL3 from their experimental data. It 
is observed that the results of the present study agree very well with the experimental curve and 
that there is also good agreement with the other numerical studies. The deviations of the other 
numerical studies from the experimental curve are attributed to the assumption of fully developed 
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X I I I I 1 1 1 1  

Ca'!Xi*l 1x102 5 1x103 5 8  
I 1 I I 1 1 1 1  

Re 
Figure 8. Average pressure drop coefficient per row of the tube bank. Comparisons with experimental data and other 

calculations for a pitch ratio of 1.5 
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Figure 9. Modified j-factor based on the average heat transfer coefficient for the tube bank. Comparisons with 

experimental data and other calculations for a pitch ratio of 1.5 
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I n -  

(u 
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X 

flow (negligence of entrance effects) by the other authors or to the fact that the penalty method 
used14 may not be very accurate at the higher Reynolds numbers, as reported in Thomas~et . '~  

Figure 9 shows the average modifiedj-factor per row of the bundle as a function of the Reynolds 
number. These results have been corrected for 10 rows to be in accordance with the experimental 
data and other numerical results. It is observed that the present data agree well with the 
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Figure 10. Calculated average pressure drop coefficient per row for a tube bank of pitch ratio 2 
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Figure 1 1 .  Modified j-factor based on the'average heat transfer coefficient and comparisons with data for a tube bank of 
pitch ratio 2 
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experimental curve of Bergelin et aL3 The small discrepancy at the higher Reynolds numbers is 
attributed to variations in the fluid properties with temperature, which are.not accounted for in 
this study. It is seen, however, that the present calculations are closer to the experimental data than 
the other numerical predictions. 

Calculations were also made using the present numerical method at a pitch ratio of 2. The 
results for the average pressure drop coefficient and the modified j-factor are shown in Figures 10 
and 11 respectively. Comparisons were made with data presented by Michaelides et ~ 1 . ~ ~ 9 ~ ~  and 
ESDI (1973) and with the correlation suggested by Z u k a ~ s k a s . ~ ~  It can be observed again that the 
present results show good agreement with the data. The other numerical studies mentioned above 
do not include this geometry in their calculations. 

It is well known that at Reynolds numbers above 300, instabilities in the flow develop and the 
flow is no longer laminar. The range 300 < Re < 3000 belongs to the transition region for a 
bundle of tubes. The present study is for a laminar case and it is expected that at high Reynolds 
numbers it will fail in its predictions. However, comparison of calculations of the average 
engineering results with experimental data show that the predictions of this method for average 
quantities-such as the overall pressure drop or the average j-factor-are reliable up to Reynolds 
numbers of 1000. It is not recommended that the same method be used for much higher 
Reynolds numbers because turbulence will start dominating the flow. 

5. CONCLUSIONS 

A numerical method was developed to predict the heat transfer and pressure drop in rigid tube 
bundles. The conservation equations were formulated in terms of the vorticity and the streamfunc- 
tion, and the Galerkin finite element technique was adopted for the solution of the steady-state 
laminar flow equations. A bilinear basis function was used to approximate the dependent 
variables, and the Picard iteration method was utilized for the solution of the resulting system of 
non-linear equations. 

Results for square tube arrays and for pitch ratios of 1.5 and 2 were obtained. It was observed 
that there is good agreement with experimental data for the pressure and heat transfer coefficients 
up to Reynolds numbers of 1000. There is better agreement of the present study with experimental 
data than of the results of other numerical studies. This leads us to conclude that the solution of 
the problem with the finite element technique and the streamfunction/vorticity formulation yields 
more accurate predictions than other numerical methods. 
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